Режимы работы ацп в микроконтроллерах. AVR


Часто бывает потребность замерять напряжения. Для этих целей в микроконтроллере есть АЦП (аналого-цифровой преобразователь). АЦП - это устройство, которое преобразует аналоговый сигнал в его цифровое представление. На вход АЦП подается аналоговый сигнал, а на выходе мы получаем эквивалентный цифровой сигнал.

Основные характеристики АЦП

  • Частота преобразования - это сколько раз в секунду АЦП сможет измерить напряжение
  • Разрядность - количество дискретных значений напряжения, на который делится весь рабочий диапазон входных напряжений. АЦП в AVR десяти разрядные. То есть, максимальное напряжение на входе АЦП будет переводиться в 2 10 =1024
  • Диапазон входных напряжений - это минимальное и максимальное напряжение, которое можно подавать на входы АЦП. Для avr это диапазон от 0 до напряжения питания микроконтроллера
Для работы АЦП необходим источник опорного напряжения (ИОН). Это эталон, по отношению к которому он измеряет напряжение на входе. В AVR в качестве источника опорного напряжения может выступать напряжения питания МК, источник опорного напряжения, подключенный к ножке ARef и внутренний ИОН на 2,56 в. ИОН должен быть как можно стабильней, от этого зависит точность измерений. Чтобы пощупать все это, давайте сделаем простой вольтметр на 5в. Запускаем CVAVR, на вопрос запустить CodeWizardAVR кликаем "да" и переходим во вкладку ADC

Нам для нашего вольтметра нужно установить источник опорного напряжения на ножке AVCC (ножка питание АЦП ), частота преобразования 500 килогерц

Мы наши измерения с АЦП будем выводить на lcd-дисплей, для его инициализации переходим во вкладку LCD и устанавливаем все, как на скриншоте

Теперь все настройки выполнены, кликаем file->Generate. save and exit . Дописываем код, который сгенерировал CWAVR, и убираем в нём инициализации периферии МК, которые мы не используем, получается следующий код:

#include #include #include // Alphanumeric LCD Module functions #asm .equ __lcd_port=0x12 ;PORTD #endasm #include #define ADC_VREF_TYPE 0x40 // Read the AD conversion result unsigned int read_adc(unsigned char adc_input) { ADMUX=adc_input | (ADC_VREF_TYPE & 0xff); // Delay needed for the stabilization of the ADC input voltage delay_us(10); // Start the AD conversion ADCSRA|=0x40; // Wait for the AD conversion to complete while ((ADCSRA & 0x10)==0); ADCSRA|=0x10; return ADCW; } void main(void) { char lcd_buffer; unsigned int u; // ADC initialization // ADC Clock frequency: 500,000 kHz // ADC Voltage Reference: AVCC pin ADMUX=ADC_VREF_TYPE & 0xff; ADCSRA=0x81; // LCD module initialization lcd_init(16); while (1) { /*так как АЦП у нас 10-битный, то максимальное число, которое вернет функция, read_adc() будет равно 1024, это число будет эквивалентом напряжения на входе adc0. Например, если read_adc() вернул 512, то это значит, что на вход adc0 мы подали половину опорного напряжения Чтобы вычислить реальное напряжение, нам нужно составить пропорцию опорное напряжение - 1024 искомое напряжение - adc У нас опорное напряжение = 5 Искомое напряжение = 5 * adc/1024, или Искомое напряжение = 0,005*adc для простоты переведём вольты в миливольты, домножив на 1000 Искомое напряжение = 0,005*adc*1000 */ u=read_adc(0) * 5;//вызываем функцию для измерения напряжения и передаем ей номер ножки, на которой нужно измерить напряжение lcd_clear(); //чистим дисплей перед выводом lcd_gotoxy(0,0); // перевод курсор в положение x=0 y=0 sprintf(lcd_buffer,"U = %i mv",u); // формируем строку для вывода lcd_puts(lcd_buffer); //выводим строку на дисплей delay_us(500); //делаем задержку 500 мл }; }

Программа готова, дело за схемой

Схема очень простая, на ней мы видим микроконтроллер atmega8 и lcd-дисплей знакосинтезирующий 16х2 (пример работы с lcd описан ). Наш простой вольтметр измеряет напряжения до 5 в. Как измерять напряжения больше 5 в Схема выполнена в Proteus, все необходимые файлы для этого урока находятся в архиве

АЦП — Аналого-цифровой преобразователь. Из названия можно догадаться, что на вход подается аналоговый сигнал, который преобразуется в число.

Первое о чем нужно сказать — АЦП микроконтроллера умеет измерять только напряжение. Чтобы произвести измерение других физических величин, их нужно вначале преобразовать в напряжение. Сигнал всегда измеряется относительно точки называемой опорное напряжение, эта же точка является максимумом который можно измерить. В качестве источника опорного напряжения (ИОН), рекомендуется выбирать высокостабильный источник напряжения, иначе все измерения будут плясать вместе с опорным.

Одной из важнейших характеристик является разрешающая способность, которая влияет на точность измерения. Весь диапазон измерения разбивается на части. Минимум ноль, максимум напряжение ИОН. Для 8 битного АЦП это 2^8=256 значений, для 10 битного 2^10=1024 значения. Таким образом, чем выше разрядность тем точнее можно измерять сигнал.

Допустим вы измеряете сигнал от 0 до 10В. Микроконтроллер используем Atmega8, с 10 битным АЦП. Это значит что диапазон 10В будет разделен на 1024 значений. 10В/1024=0,0097В — с таким шагом мы сможем измерять напряжение. Но учтите, что микроконтроллер будет считать, величину 0.0097, 0.0098, 0.0099… одинаковыми.

Тем не менее шаг в 0,01 это достаточно неплохо. Однако, есть несколько рекомендаций, без которых эта точность не будет соблюдена, например для измерения с точностью 10бит, частота на которой работает АЦП должна быть 50-200 кГц. Первое преобразование занимает 25 циклов и 13 циклов далее. Таким образом, при частоте 200кГц мы сможем максимум выжать
200 000/13 = 15 384 измерений.

В качестве источника опорного напряжения можно использовать внутренний источник и внешний. Напряжение внутреннего источника (2,3-2,7В) не рекомендуется использовать, по причине низкой стабильности. Внешний источник подключается к ножке AVCC или Aref, в зависимости от настроек программы.

При использовании АЦП ножка AVCC должна быть подключена. Напряжение AVCC не должно отличаться от напряжения питания микроконтроллера более чем на 0,3В. Как было сказано, максимальное измеряемое напряжение равно опорному напряжению(Vref), находится оно в диапазоне 2В-AVCC. Таким образом, микроконтроллер не может измерить более 5В.

Чтобы расширить диапазон измерения, нужно измерять сигнал через делитель напряжения. Например, максимальное измеряемое напряжение 10В, опорное напряжение 5В. Чтобы расширить диапазон измерения, нужно уменьшить измеряемый сигнал в 2 раза.

Формула для расчета делителя выглядит так:

U вых = U вх R 2 /(R 1 + R 2)

Подставим наши значения в формулу:

5 = 10*R2/(R1+R2)

т.е. можно взять любые два одинаковых резистора и подключить их по схеме

Следовательно, когда мы измеряем напряжение через делитель, нужно полученное значение АЦП умножить на коэффициент=Uвых/Uвх.

Полная формула вычисления измеряемого напряжения будет выглядеть так:
U=(опорное напряжение*значение АЦП*коэффициент делителя)/число разрядов АЦП

Пример: опорное 5В, измеренное значение АЦП = 512, коэффициент делителя =2, АЦП 10разрядный.

(5*512*2)/1024=5В — реальное измеренное значение напряжения.

Некоторые программисты пишут программу так, чтобы микроконтроллер автоматически вычислял коэффициент делителя, для этого выходной сигнал измеряют образцовым прибором и заносят это значение в программу. Микроконтроллер сам соотносит истинное напряжение каждому значению АЦП, сам процесс однократный и носит название калибровки.

Перейдем к программной реализации. Создаем проект с указанными параметрами. Также подключим дисплей на порт D для отображения информации.

Измерение будет производиться в автоматическом режиме, обработка кода в прерывании, опорное напряжение подключаем к ножке AVCC. По сути нам нужно только обрабатывать получаемые данные. Измеренные данные хранятся в переменной adc_data. Если нужно опрашивать несколько каналов, то выбираем какие каналы сканировать, а данные будут для ножки 0 в adc_data, для ножки 1 в adc_data и т.д.

В основном цикле добавим строки:

result=((5.00*adc_data)/1024.00); //пересчитываем значение АЦП в вольты
sprintf(lcd_buffer,»U=%.2fV»,result); //помещаем во временную переменную результат
lcd_puts(lcd_buffer); //выводим на экран

Небольшое замечание, чтобы использовать числа с плавающей точкой, нужно в настройках проекта изменить (s)printf Features: int, width на float, width, precision. Если этого не сделать десятые и сотые мы не увидим.

Таким образом, мы всего лишь перевели значение АЦП в вольты и вывели на дисплей. Результат в протеусе выглядит так:

Резистором можно менять напряжение, измеряемое напряжение выведено на дисплей. При сборке на реальном железе к ножке Aref нужно подключить конденсатор на 0,1мкФ. Урок получился немного сложным, но думаю он вам понравится.

Файл протеуса и прошивка:

Update:
Измерение тока:

АЦП – аналогово-цифровой преобразователь (ADC- Analog-to-Digital Converter). Преобразует некий аналоговый сигнал в цифровой. Битность АЦП определяет точность преобразования сигнала. Время преобразования – соответственно скорость работы АЦП. АЦП встроен во многих микроконтроллерах семейства AVR и упрощает использование микроконтроллера во всяких схемах регулирования, где требуется оцифровывать некий аналоговый сигнал.

Рассмотрим принцип работы АЦП . Для преобразования нужен источник опорного напряжения и собственно напряжение, которое мы хотим оцифровать (напряжение, которое преобразуется должно быть меньше опорного). Также нужен регистр, где будет храниться преобразованное значение, назовем его Z . Входное напряжение = Опорное напряжение*Z/2^N, где N – битность АЦП . Условимся, что этот регистр, как у ATmega8, 10-ти битный. Преобразование в нашем случае проходит в 10 стадий. Старший бит Z9 выставляется в единицу. Далее генерируется напряжение (Опорное напряжение*Z/1024) , это напряжение, с помощью аналогового компаратора сравнивается с входным, если оно больше входного, бит Z9 становиться равным нулю, а если меньше – остается единицей. Далее переходим к биту Z8 и вышеописанным способом получаем его значения. После того, как вычисление регистра Z окончено, выставляется некий флаг, который сигнализирует, что преобразование закончено и можно считывать полученное значение. На точность преобразования могут очень сильно влиять наводки и помехи, а также скорость преобразования. Чем медленнее происходит преобразования – тем оно точней. С наводками и помехами следует бороться с помощью индуктивности и емкости, как советует производитель в даташите:

В микроконтроллерах AVR как источник опорного напряжения может использоваться вывод AREF , или внутренние источники 2,56В или 1,23В. Также источником опорного напряжения может быть напряжение питания. В некоторых корпусах и моделях микроконтроллеров есть отдельные выводы для питания АЦП: AVCC и AGND . Выводы ADCn – каналы АЦП . С какого канала будет оцифровываться сигнал можно выбрать с помощью мультиплексора.
Теперь продемонстрируем примером сказанное выше. Соорудим макет, который будет работать как вольтметр с цифровой шкалой. Условимся, что максимальное измеряемое напряжение будет 10В. Также пусть наш макет выводит на ЖКИ содержимое регистра ADC .

Для увеличения кликните на схему.

Обвязка микроконтроллера и ЖКИ WH1602A стандартна. X1 – кварцевый резонатор на 4 Мгц, конденсаторы С1,С2 – 18-20 пФ. R1-C7 цепочка на выводе reset по 10 кОм и 0,1 мкФ соответственно. Сигнальный светодиод D1 и ограничивающий резистор R2 200 Ом и R3 – 20 Ом. Регулировка контраста ЖКИ – VR1 на 10 кОм. Источник опорного напряжения мы будем использовать встроенный на 2,56В. С помощью делителя R4-R5 мы добьемся максимального напряжения 2,5В на входе PC0 , при напряжении на щупе 10В. R4 – 3 кОм, R5 – 1 кОм, в их номиналу нужно отнестись тщательно, но если не возможности подобрать точно такие, можно сделать любой резистивный делитель 1:4 и программно подкорректировать показания, если это потребуется. Дроссель на 10мкГн и конденсатор на 0,1 мкФ для устранения шумов и наводок на АЦП на схеме не показан. Их наличие подразумевается само собой, если используется АЦП . Теперь дело за программой:

{codecitation style="brush: xml;"} #include

#define RS 2 //RS=PD2
#define E 3 //E=PD3

#define TIME 10 //Константа временной задержки для ЖКИ
//Частота тактирование МК - 4Мгц

#define R_division 3.837524 //=R4/R5 константа

Unsigned int u=0; //Глобальная переменная с содержимым преобразования

Void pause (unsigned int a)
{
unsigned int i;
for (i=a;i>0;i--);
}

Void lcd_com (unsigned char lcd) //Передача команды ЖКИ
{
unsigned char temp;

Temp=(lcd&~(1< PORTD=temp; //Выводим на portD старшую тетраду команды, сигналы RS, E
PORTD=temp&~(1<
temp=((lcd*16)&~(1< PORTD=temp; //Выводим на portD младшую тетраду команды, сигналы RS, E
asm("nop"); //Небольшая задержка в 1 такт МК, для стабилизации
PORTD=temp&~(1<
pause(10*TIME); //Пауза для выполнения команды
}

Void lcd_dat (unsigned char lcd) //Запись данных в ЖКИ
{
unsigned char temp;

Temp=(lcd|(1< PORTD=temp; //Выводим на portD старшую тетраду данных, сигналы RS, E
asm("nop"); //Небольшая задержка в 1 такт МК, для стабилизации
PORTD=temp&~(1<
temp=((lcd*16)|(1< PORTD=temp; //Выводим на portD младшую тетраду данных, сигналы RS, E
asm("nop"); //Небольшая задержка в 1 такт МК, для стабилизации
PORTD=temp&~(1<
pause(TIME); //Пауза для вывода данных
}

Void lcd_init (void) //Иниализация ЖКИ
{
lcd_com(0x2c); //4-проводный интерфейс, 5x8 размер символа
pause(100*TIME);
lcd_com(0x0c); //Показать изображение, курсор не показывать
pause(100*TIME);
lcd_com(0x01); //Очистить DDRAM и установить курсор на 0x00
pause (100*TIME);
}

Unsigned int getADC(void) //Считывание АЦП
{ unsigned int v;

ADCSRA|=(1<
while ((ADCSRA&_BV(ADIF))==0x00) //Дождатся окончания преобразования
;

V=(ADCL|ADCH<<8); br=""> return v;
}

Void write_data (unsigned int u)
{ unsigned char i;
double voltage=0;

Lcd_com(0x84); //Вывод регистра ADC на ЖКИ
for (i=0;i<10;i++) br=""> if ((u&_BV(9-i))==0x00) lcd_dat (0x30);
else lcd_dat (0x31);

Lcd_com(0xc2);
voltage= R_division*2.56*u*1.024; //Расчет напряжения

I=voltage/10000; //Выведение напряжения на ЖКИ
voltage=voltage-i*10000;
if (i!=0) lcd_dat(0x30+i);

I=voltage/1000;
voltage=voltage-i*1000;
lcd_dat(0x30+i);

I=voltage/100;
voltage=voltage-i*100;
lcd_dat(0x30+i);

I=voltage/10;
voltage=voltage-i*10;
lcd_dat(0x30+i);

Lcd_dat("v");
}

Int main(void)
{
DDRD=0xfc;

Pause(3000); //Задержка для включения ЖКИ
lcd_init(); //Инициализация ЖКИ

Lcd_dat("A"); //Пишем "ADC=" и "U=" на ЖКИ
lcd_dat("D");
lcd_dat("C");
lcd_dat("=");
lcd_com(0xc0);
lcd_dat("U");
lcd_dat("=");

ADCSRA=(1< //Включаем АЦП, тактовая частота бреобразователя =/8 от тактовой микроконтроллера
ADMUX=(1< //Внутренний источник опорного напряжения Vref=2,56, входом АЦП является PC0

While(1)
{
u=getADC(); //Считываем данные
write_data(u); //Выводим их на ЖКИ
pause(30000);
}

Return 1;
}

Программа проста. В начале мы инициализируем порты ввода/вывода. Для того, чтобы служить входом АЦП , пин PC0 должен работать на вход. Далее проводим инициализацию ЖКИ и АЦП . Инициализация АЦП заключается в его включении битом ADEN в регистре ADCSRA . И выбора частоты преобразования битами ADPS2, ADPS1, ADPS0 в том же регистре. Также выбираем источник опорного напряжения, биты REFS1 REFS0 в регистре ADMUX и вход АЦП : биты MUX0,MUX1,MUX2, MUX3 (в нашем случаем входом АЦП является PC0 , поэтому MUX0.3=0 ). Далее, в вечном цикле, начинаем преобразования установкой бита ADSC в регистре ADCSRA . Дожидаемся окончания преобразования (бит ADIF в ADCSRA становиться равным 1). Далее вынимаем данные из регистра ADC и выводим их на ЖКИ . Вынимать данные из ADC нужно в такой последовательности: v=(ADCL+ADCH*256); если использовать v=(ADCH*256+ADCL); - в упор не работает. Также есть хитрость, чтобы не работать с дробными числами. Когда производиться вычисления входного напряжения в вольтах. Мы просто будем хранить наше напряжения в милливольтах. Например, значение переменной voltage 4234 означает, что мы имеем 4,234 вольта. Вообще операции с дробными числами кушают очень много памяти микроконтроллера (наша прошивка вольтметра весит чуть больше 4 килобай, это половина памяти программ ATmega8 !), их рекомендуется использовать только при особой необходимости. Вычисления входного напряжения в милливольтах просто: voltage=R_division*2.56*u*1.024;
Здесь R_division – коефициент резистивного делителя R4-R5 . Так, как реальный коефициент делителя может отличаться от расчетного, то наш вольтметр будет врать. Но подкорректировать это просто. С помощью тестера меряем некое напряжение, получаем X вольт, а наш вольтметр пускай показывает Y вольт. Тогда R_division = 4*X/Y , если Y больше X и 4*Y/X если X больше Y . На этом настройка вольтметра завершена, и им можно пользоваться.
Скачать прошивку в виде проекта под AVR Studio 4.
Как работает вольтметр можно ознакомиться на видео:

Также можно доработать свой блок питания. Вставив в него цифровой вольтметр-амперметр на ЖКИ и защиту от перегрузки (для измерения тока нам понадобиться мощный шунт сопротивлением порядка 1 Ом).

В свой блок питания я встроил еще защиту от перегрузки, когда ток превышает 2А, то пьезо пищалка начинает усердно пищать, сигнализируя о перегрузке:

Отличительные особенности:

  • Рассмотрены характеристики аналогово-цифровых преобразователей
  • Измерение описанных характеристик АЦП
  • Влияние температуры, частоты и напряжения питания на результат преобразования
  • Компенсация погрешностей смещения и коэффициента передачи

Введение

В данных "Рекомендациях…" объясняется снятие характеристик различных АЦП, приведенных в документации, и как они влияют на результат измерений АЦП. Также описывается, как определить данные параметры в процессе тестирования приложения на стадии производства и как выполнить реально-временную компенсацию некоторых измеренных отклонений.

Большим преимуществом флэш-памяти, встроенной в AVR, является возможность замены калибровочного кода кодом приложения сразу после снятия характеристик. Таким образом, выполнение калибровки не приводит к увеличению размера памяти программ конечного устройства.

1. Сведения из теории

Перед началом изучения деталей необходимо ознакомиться с некоторыми центральными понятиями. Если читатель знаком с такими понятиями, как квантование, разрешающая способность и передаточная функция АЦП, то следующий раздел можно пропустить.

1.1. Основные характеристики АЦП

АЦП преобразовывает аналоговый входной сигнал в цифровое выходное значение, которое соответствует уровню входного сигнала относительно опорного источника. Для более лучшего понимания характеристик АЦП представим его в виде трех разновидностей: идеальный, совершенный и реальный АЦП. Идеальный АЦП может быть описан только теоретически, физически реализовать его невозможно. Он обладает бесконечной разрешающей способностью, при которой каждому произвольному входному значению соответствует уникальное выходное значение в пределах диапазона преобразования. Математически идеальный АЦП описывается в виде прямолинейной передаточной функции (см. рисунок 1).

Рисунок 1. Передаточная функция идеального АЦП

Чтобы дать определение совершенного АЦП необходимо предварительно рассмотреть понятие квантование. В связи с тем, что АЦП имеет цифровую основу, то генерация им непрерывных значений невозможна. Выходной диапазон может быть представлен в виде множества интервалов, каждому из которых соответствует собственное цифровое значение. Это означает, что одно выходное значение соответствует не конкретному уровню входного напряжения, а небольшому диапазону входных значений. Передаточная функция такого преобразования имеет лестничную форму. Например, АЦП с 8 интервалами имеет разрешающую способность 8 уровней или иными словами 3 разряда. На рисунке 2 представлен пример передаточной функции 3-хразрядного совершенного АЦП вместе с передаточной функций идеального АЦП. Как следует из рисунка совершенный АЦП эквивалентен идеальному точно посредине каждого интервала квантования. Это означает, что совершенный АЦП по существу округляет входные значения к ближайшему выходному значению.


Рисунок 2. Передаточная функция 3-разрядного совершенного АЦП

Максимальная погрешность совершенного АЦП составляет ±1/2 интервала дискретизации. Иными словами, максимальная погрешность квантования всегда ±1/2 мл.разр., где мл. разр. - приращение входного напряжения, при котором изменяется значение младшего разряда выходного кода. Реальный АЦП характеризуется другими источниками погрешностей, которые будут рассмотрены далее.

1.2. Диапазоны преобразования

АЦП в микроконтроллерах AVR можно сконфигурировать на несимметричное и на дифференциальное преобразование. Несимметричный режим используется для измерения уровней входных напряжений в одном входном канале, а дифференциальный режим предназначен для измерения разности напряжений между двумя каналами. Независимо от режима преобразования, входные напряжения на любом из каналов должны находиться между GND и AVCC.

При использовании несимметричного режима напряжение относительно общего (GND) преобразовывается в цифровое значение. Если же используется дифференциальный режим, то в цифровое значение преобразовывается напряжение с выхода дифференциального усилителя (с опциальным усилением). На рисунке 3 показана упрощенная схема входного каскада АЦП.


Рисунок 3. Упрощенная схема входного каскада АЦП

Для задания диапазона преобразования в схеме необходим источник опорного напряжения (Vион), который задает, какому уровню входного напряжения соответствует выходное значение. В соответствии с документацией напряжение Vион должно быть не менее 2,0В для стандартных микроконтроллеров и не менее 1,0В для микроконтроллеров с напряжением питания от 1,8В. Данное распространяется на оба режима преобразования: несимметричный и дифференциальный. Подробности необходимо выяснить в документации.

1.2.1. Несимметричный диапазон преобразования

В несимметричном режиме входной сигнал поступает непосредственно к схеме преобразования (см. рисунок 3а). 10-разрядный АЦП микроконтроллера AVR, таким образом, преобразовывает непрерывные входные напряжения в диапазоне от GND до Vион в дискретные выходные значения от 0 до 1023, соответственно.

1.2.2. Дифференциальный диапазон преобразования

В дифференциальном режиме преобразования два входных канала подключаются к дифференциальному усилителю с опциональным усилительным каскадом. Затем напряжение с выхода усилителя поступает к логике преобразования, как показано на рисунке 3б. В этом случае разности напряжений в диапазоне от -Vион до +Vион соответствуют выходные значения в диапазоне от -512 до +511. Выходное значение представляется в формате двоичного дополнения. Несмотря на возможность образования отрицательного напряжения на выходе дифференциального усилителя входные напряжения должны быть в диапазоне GND…AVCC.

Обратите внимание, что некоторые микроконтроллеры не могут измерить отрицательного приращения, как, например, ATtiny26.

1.3. Необходимость калибровки

Общая погрешность реального АЦП складывается не только из погрешности квантования. В данном документе рассматриваются погрешности смещения и коэффициента передачи и методы их компенсации. Кроме того, рассматривается измерение двух нелинейностей, а именно дифференциальной и интегральной нелинейности.

В большинстве приложений нет необходимости выполнять калибровку АЦП при использовании несимметричного режима преобразования. Типичная погрешность в этом случае составляет 1-2 мл.разр., что зачастую удовлетворяет требованиям приложения и исключает необходимость калибровки.

Однако, при использовании дифференциального преобразования ситуация меняется, особенно при использовании внутреннего усилительного каскада с большим усилением. Незначительные отклонения, вызванные особенностями производства микроконтроллеров, умножаются усилительным каскадом и, поэтому, у разных микроконтроллеров могут наблюдаться существенные отличия в результате измерения при прочих равных условиях. Некомпенсированная погрешность может достигать 20 мл. разр. и выше. Данные отклонения могут быть определены для каждого микроконтроллера, а затем компенсированы программно.

Значение 20 мл. разр. на первый взгляд может показаться большим значением, но это не означает, что дифференциальный режим непрактичен в использовании. С помощью простого калибровочного алгоритма возможно достичь точность 1-2 мл.разр.

1.4. Абсолютная погрешность

Абсолютная погрешность - максимальное отклонение между идеальной прямолинейной и реальной передаточными функциями, в т.ч. внутри интервалов квантования. Минимальная абсолютная погрешность, таким образом, равна погрешности квантования 1/2 мл. разр.

Абсолютная погрешность или абсолютная точность - общая некомпенсированная погрешность, которая включает погрешность квантования, погрешность смещения, погрешность коэффициента передачи и нелинейность. Смещение, коэффициент передачи и нелинейность будут описаны далее.

Абсолютная погрешность может быть измерена с помощью пилообразного входного напряжения. В этом случае все выходные значения сравниваются с входным напряжением, а по максимальному отклонению определяется абсолютная погрешность.

Обратите внимание, что абсолютная погрешность не может быть компенсирована непосредственно, без использования таблиц преобразования или полиноминальной аппроксимации. Однако, наиболее весомые составляющие общей погрешности - передаточная погрешность и погрешность смещения - могут быть компенсированы.

Необходимо помнить, что абсолютная погрешность сокращает диапазон АЦП и, поэтому, необходимо учесть запас ко входным минимальным и максимальным напряжениям, чтобы далее исключить необходимость помнить все время о абсолютной погрешности.

1.5. Погрешность смещения

Погрешность смещения - отклонение фактической передаточной функции АЦП от прямолинейной передаточной функции идеального АЦП при нулевом входном напряжении.

Когда выходное значение изменяется от 0 к 1, но при этом входное напряжение не достигло уровня 1/2 мл.разр., то говорят, что имеет место погрешность смещения. Если ошибка смещения положительная, то выходное значение будет больше 0, когда входное напряжение приближается к 1/2 мл.разр. снизу. Если ошибка смещения отрицательная, то входное значение будет больше 1/2 мл.разр. при первом изменении выходного кода. Другими словами, если фактическая передаточная функция становится ниже идеальной линии, то погрешность смещения отрицательная и наоборот. Отрицательные и положительные смещения показаны на рисунке 4.


Рисунок 4. Примеры положительного (а) и отрицательного (б) смещений

Поскольку несимметричное преобразование дает только положительный результат, то процедура измерения смещений дифференциального и несимметричного преобразований отличаются.

1.5.1. Погрешность смещения в несимметричных каналах

Для измерения погрешности смещения необходимо увеличивать входное напряжение от GND до возникновения первого изменения выходного значения. Далее необходимо вычислить разницу между входным напряжением, при котором совершенный АЦП выполняет такой переход, и входным напряжением, при котором произошел фактический переход. Далее данную разницу преобразовываем в мл. разр., что будет эквивалентно ошибке смещения.

На рисунке 5а первый переход возникает при уровне 1 мл.разр. При изменении выходного кода с 2 к 3 у совершенного АЦП эквивалентное входное напряжение будет равно 2 1/2 мл. разр. Разница равна +1 1/2 мл. разр. и является погрешностью смещения. Данная разница показана на рисунке размерной линией. Такие же рассуждения применимы и к рисунку 5б. Первое изменение возникает при 2 мл.разр. У совершенного АЦП переход от 0 к 1 возникает при входном напряжении 1/2 мл.разр. Таким образом, погрешность смещения равна разнице: - 1 1/2 мл. разр.


Рисунок 5. Положительная (а) и отрицательная (б) погрешности смещения в режиме несимметричного преобразования

Процедура измерения может быть формализована в виде блок-схемы (см. рисунок 6).


Рисунок 6. Блок-схема измерения несимметричных погрешностей смещения

Для компенсации погрешностей смещения в несимметричных каналах необходимо из каждого измеренного значения вычесть погрешность смещения. Необходимо, помнить, что погрешности смещения ограничивают диапазон преобразования АЦП. Большие положительные погрешности смещения вызывают установку на выходе максимального значения еще до достижения входным напряжением максимума. В свою очередь отрицательные погрешности смещения приводят к появлению на выходе 0 при минимальных входных напряжениях.

1.5.2. Погрешность смещения в дифференциальных каналах

Погрешность смещения в дифференциальных каналах вычисляется более просто, т.к. в этом случае не требуется регулировка входного напряжения. Два дифференциальных входа необходимо подключить к одному и тому же напряжению, а результирующее выходное значение и будет погрешностью смещения. Поскольку при данном способе не дается точная информация при каком именно уровне возник первый переход, то его погрешность равно от 1/2 до 1 мл.разр. в худшем случае.

Для компенсации погрешностей смещения при использовании дифференциальных каналов необходимо из каждого измеренного значения вычесть погрешность смещения.

1.6. Передаточная погрешность

Передаточная погрешность определяется как отклонение в средней точке последнего интервала дискретизации от идеальной прямой линии после компенсации погрешности смещения. После компенсации всех погрешностей смещения нулевому входному напряжению всегда соответствует нулевое выходное значение. Однако, под влиянием передаточных погрешностей изменяется наклон фактической передаточной функции относительно идеального наклона. Данная передаточная погрешность может быть измерена и компенсирована путем масштабирования выходных значений.

При реально-временной компенсации часто используется целочисленная арифметика, т.к. вычисления с плавающей точкой выполняются гораздо дольше. Таким образом, для достижения наилучшей точности измерения отклонения наклона оно должно быть выполнено как можно далее от нулевого значения. Чем выше значения, тем лучше точность измерения. Это более подробно описано далее. Пример передаточной функции 3-разрядного АЦП с передаточной погрешностью показан на рисунке 7. Приведенное далее описание распространяется на оба режима преобразования: несимметричный и дифференциальный.


Рисунок 7. Примеры положительной (а) и отрицательной (б) передаточных погрешностей

Для измерения передаточной погрешности необходимо увеличивать входное напряжение от 0 до достижения последнего интервала преобразования. Масштабирующий коэффициент для компенсации передаточной погрешности равен отношению идеального выходного значения посредине последнего интервала дискретизации и фактического значения в этой же точке.

На рисунке 7а выходное значение достигло предела еще до достижения максимума входным напряжением. Вертикальная размерная линия показывает середину последнего выходного интервала дискретизации. Идеальное выходное значение для данного входного напряжения равно 5,5, таким образом, масштабирующий коэффициент равен 5,5/7. На рисунке 7б выходное значение достигло только 6 при достижении входным напряжением максимума. В итоге присутствует отрицательное отклонение от фактической передаточной функции. Для этого случая идеальное выходное значение посередине последнего интервала преобразования равно 7,5, а масштабирующий коэффициент 7,5/6. Процедура измерения представлена на рисунке 8.


Рисунок 8. Блок-схема измерения передаточных погрешностей

1.7. Нелинейность

После компенсации погрешности смещения и передаточной погрешности фактическая передаточная функция должна совпадать с передаточной функцией совершенного АЦП. Однако ввиду нелинейности АЦП фактическая кривая может слегка отклоняться от совершенной кривой, даже если обе кривые совпадают в районе 0 и в точке измерения передаточной погрешности. Имеется два способа измерения нелинейности; оба метода описаны ниже. На рисунке 9 показаны примеры для обоих методов измерения.


Рисунок 9. Пример нелинейной кривой преобразования АЦП

1.7.1. Дифференциальная нелинейность

Дифференциальная нелинейность (ДНЛ) - максимальное и минимальное отклонения фактической ширины интервала от ширины интервала совершенного АЦП (1 мл. разр.) для всех интервалов дискретизации. Нелинейность приводит к варьированию размеров интервалов дискретизации. Все интервалы должны иметь ширину 1 мл. разр., но некоторые уже или шире.

Для измерения ДНЛ на вход подается пилообразное напряжение и записываются все изменения выходных значений. Ширина интервала определяется как расстояние между двумя переходами и большинство отрицательных и положительных отклонений от 1 мл.разр. используются для определения максимальной и минимальной ДНЛ.

Интегральная нелинейность

Интегральная нелинейность (ИНЛ) - максимальное отклонение по вертикали между фактической и совершенной кривыми преобразования АЦП.

ИНЛ можно интерпретировать как сумму ДНЛ. Например, несколько последовательных отрицательных ДНЛ поднимают фактическую кривую над совершенной, как показано на рисунке 9а. Отрицательные ИНЛ сигнализируют о снижении фактической кривой ниже совершенной. Максимальная и минимальная ИНЛ измеряются с помощью того же пилообразного входного напряжения, что и при измерении ДНЛ. Для этого записываются отклонения посередине каждого интервала преобразования, а затем определяются максимальное и минимальное значения, соответствующие максимальной и минимальной ИНЛ.

Измерения и компенсация

Очень важно, что бы измерение ИНЛ и ДНЛ выполнялось после компенсации погрешности смещения и передаточной погрешности. В противном случае в результат измерения будут входить указанные погрешности и, следовательно, полученные значения ДНЛ и ИНЛ не будут соответствовать действительности.

Нелинейность не может быть компенсирована с помощью простых вычислений. Для этого необходима либо полиноминальная аппроксимация, либо таблицы преобразования. Однако типичные значения ИНЛ и ДНЛ для 10-разрядных АЦП микроконтроллеров AVR составляют 1/2 мл. разр. и редко влияют на жизнеспособность приложений.

1.8. Влияние температуры, частоты и напряжения питания

При использовании внутреннего ИОН совместно с АЦП необходимо уточнить его точность. Технические характеристики внутреннего ИОН приводятся в документации на интересующий тип микроконтроллера. Из них следует, что напряжение ИОН слегка зависит от напряжения питания и рабочей температуры.

Точность работы АЦП также связана с его синхронизацией. Рекомендованная максимальная частота синхронизации АЦП ограничивается характеристиками внутреннего ЦАП в схеме преобразования. Для достижения оптимальных характеристик частота синхронизации АЦП не должна превышать 200 кГц. Однако частоты до 1 МГц не приводят к существенному ухудшению разрешающей способности.

Характеристики работы АЦП с частотами синхронизации выше 1МГц не определялись.

1.9. Частотный диапазон и входное сопротивление

В несимметричном режиме работы АЦП частотный диапазон ограничивается частотой синхронизации АЦП. Одно преобразование длиться 13 тактов, поэтому, при максимальной тактовой частоте 1 МГц достигается частота преобразования 77 тысяч преобразований в секунду. Таким образом, в соответствии с теоремой Котельникова частотный диапазон для несимметричного режима преобразования ограничивается частотой 38,5 кГц.

В дифференциальном режиме частотный диапазон ограничивается частотой 4 кГц за счет дифференциального усилителя. Частотные составляющие выше частоты 4 кГц должны быть удалены с помощью внешнего аналогового фильтра, что позволить избежать нелинейностей.

Входное сопротивление по отношению к VCC и GND составляет 100 МОм (типичное значение). Совместно с внутренним сопротивлением источника сигнала образуется делитель напряжения. Таким образом, для получения корректного результата преобразования необходимо, чтобы внутреннее сопротивление источника сигнала было намного меньше входного сопротивления АЦП.

2. Реализация

На рисунке 10 показан пример установки для выполнения калибровки.


Рисунок 10. Установка для калибровки в производственных условиях

На этапе тестирования выполняется определение характеристик АЦП каждого микроконтроллера с помощью подобной приведенной испытательной установки. После подключения тестового блока к калибруемому микроконтроллеру AVR его тестовые сигналы выполняют самокалибровку автоматически. В состав тестового блока входит высокоточный ЦАП (например, с 16-разрядным разрешением) для генерации входных напряжений в соответствии с калибровочным алгоритмом. По завершении калибровки определенные значения погрешности смещения и передаточной погрешности записываются в ЭСППЗУ для дальнейшего использования, а затем AVR сигнализирует о готовности к следующей фазе тестирования.

Обратите внимание, что в данном случае требуется, чтобы бит EESAVE был запрограммирован. В этом случае выполнение операции стирания всей памяти, которая предшествует программированию флэш-памяти, не затрагивает содержимое ЭСППЗУ. В противном случае, параметры АЦП должны быть временно запомнены программатором перед стиранием памяти микроконтроллера.

2.1. Арифметика с фиксированной точкой для коррекции погрешности смещения и передаточной погрешности

Арифметика с плавающей точкой неэффективна для масштабирования значений АЦП. Однако значение масштабирующего коэффициента для компенсации передаточной погрешности очень близко к 1, что требует некоторой точности для достижения хорошей компенсации значений АЦП. Таким образом, могут использоваться значения с фиксированной точкой, представленные в виде целочисленных значений.

Поскольку коэффициент компенсации передаточной погрешности никогда не превысит значения 2, то можно отмасштабировать с коэффициентом 2 14 , чтобы точно вписаться в 16-разрядное слово. Иными словами, масштабирующий коэффициент может быть представлен двумя байтами как число с фиксированной точкой и знаком 1:14.

Ниже приведено выражение для одновременной компенсации передаточной погрешности и погрешности смещения.

Фактическое_значение = (Код_АЦП - Смещение) · Км, (1)

где Км- масштабирующий коэффициент передаточной погрешности.

При преобразовании результата вычисления к целочисленной форме он всегда округляется к наибольшему целочисленному значению, которое меньше или равно результату. Чтобы добиться корректного округления к ближайшему целому перед преобразованием необходимо добавить 0.5. Прибавление 0.5, масштабирование на 214 и смещение представим в виде выражения (2).

2 14 · Фактическое_значение = 2 14 · Код_АЦП · Км + 2 14 · 0,5 - 2 14 · Смещение · Км (2)

Поскольку значения коэффициента масштабирования передаточной погрешности и смещения являются константами, то вычисления можно оптимизировать. Кроме того, если результат отмасштабировать на 2 2 , т.е. достигая общего масштабирования 2 16 , то старших два байта результата будут равны преобразованному целому, исключая необходимость выполнения 16 сдвигов вправо.

Введя две отмасштабированные константы factor и correction, которые используются в программе, получаем итоговые выражения:

factor = 2 14 · Км,

correction = 2 14 · (0,5 - Смещение · Км), (3)

2 16 · Фактическое_значение = 2 2 · (Код_АЦП · factor + correction).

С помощью данного метода калибровочная программа вычисляет константы factor и correction, а затем сохраняет их в ЭСППЗУ. Время выполнения программы компенсации составляют одно целочисленное умножение, одно сложение и два сдвига влево. При использовании компилятора Си компании IAR C с максимальной оптимизацией быстродействия на эти действия потребуется 42 такта ЦПУ.

2.1.1. Калибровка

Разработка тестового блока не рассматривается в рамках данных "Рекомендаций…". Однако блок-схема калибровки с помощью микроконтроллера AVR приведена. В ней подразумевается использование в тестовом блоке внешнего ЦАП и работа по собственному калибровочному алгоритму.

Нет необходимости использования нескольких каналов АЦП, необходимо только переключение между несимметричным и дифференциальным режимами. Параметры АЦП не изменяются при переключении канала, т.е. мультиплексор не вносит каких-либо погрешностей в работу АЦП.

Программа должна быть реализована, как показано на рисунке 11.

Рисунок 11. Блок-схема калибровочной программы

Данная часть программного обеспечения записывается в AVR до начала калибровки, а по ее завершении заменяется программным кодом фактического приложения. Еще раз необходимо обратить внимание, что программирование конфигурационного бита EESAVE позволит заблокировать действие команды стирания всей памяти относительно ЭСППЗУ во время перепрограммирования флэш-памяти и, таким образом, калибровочные данные будут незатронутыми.

2.1.2. Компенсация

Программный код реально-временной компенсации реализован как небольшая функция. Каждый результат измерения АЦП пропускается через эту функцию, в который используются константы factor и correction .

Рисунок 12. Блок-схема программы компенсации погрешности смещения и передаточной погрешности

Вычисления на рисунке 12 могут быть реализованы с помощью следующей Си-функции или альтернативно с помощью макроса:

Signed int adc_compensate(signed int adcvalue, signed int factor, signed long correction) { return (((((signed long)adcvalue*factor)+correction)<<2)>>16); }

Константы хранятся в ЭСППЗУ и перед началом работы должны быть скопированы в ОЗУ для ускорения доступа к ним.

Использованная литература:

  1. Robert Gordon - A Calculated Look at Fixed-Point Arithmetic (Прагматичный взгляд на арифметику с фиксированной точкой)
    http://www.embedded.com/98/9804fe2.htm
  2. Рекомендации по применению AVR210: Использование аппаратного умножающего устройства микроконтроллеров AVR

Урок 22

Часть 1

Изучаем АЦП

Сегодня мы начнем изучать очень интересную технологию, а для микроконтроллера — периферию — это аналго-цифровой преобразователь или как его называют АЦП . В английской аббревиатуре, гораздо чаще встречающейся в технической документации — ADC (Analog-to-Digital Converter ). Это такая штука, которая преобразует величину электрического сигнала в цифровой код. Затем данный код мы уже используем для обработки или для отображения тем или иным образом данной электрической величины. Это очень распространённая периферия или технология. АЦП активно используется в звукозаписи, измерительной технике, видеозаписи и во многих других случаях. Поэтому нас обойти данную вещь стороной никак не получится, тем более АЦП поддерживается аппаратно в контроллерах AVR .

В контроллере Atmega8 АЦП имеет следующие характеристики

  • Разрешение 10 бит,
  • Время преобразования одного показания от 13 до 250 микросекунд в зависимости от битности измерения, а также от тактовой частоты генератора, тактирующего контроллер,
  • Поддержка запуска по прерываниям,

Есть ещё масса различных характеристик, с которыми мы, возможно, познакомимся в дальнейшем.

Как вообще работает цифровое преобразование?

Берётся опорное напряжение и сравнивается с измеряемым. Соответственно, опорное напряжение всегда должно быть больше измеряемого. Если это не так, то нужно будет применять делители напряжения.

Изобразим схематично процесс измерения

Отрезок — это диапазон измерений. Он находится между нулём и опорным напряжением. А стрелка — это измеряемое напряжение.

Данный отрезок делится пополам, и АЦП оценивает, в какой половине находится приложенное напряжение

Если оно находится в стороне нуля, то в самый старший бит результата записывается 0, а если в стороне максимального напряжения, то единица. У нас будет единица. Затем та половина отрезка, на которой находится измеряемое напряжение делится ещё пополам, и АЦП опять измеряет, в какой половинке уже данного отрезка у нас находится измеряемое напряжение

Оценка идёт по тому же принципу — в какой стороне отрезок. В нашем случае будет 0. И этот ноль записывается в следующий более младший бит

Затем та четвертинка опять делится пополам и АЦП опять оценивает,где находится отрезок

И АЦП так и продолжает такой процесс до тех пор, пока не кончатся ячейки для битов. То есть если мы используем 10-битный режим, то. соответственно, и будет 10 подобных измерений и заполнятся 10 бит величины. Чем больше бит, тем точнее результат, но уже потребуется на это больше времени и более серьёзный и точный АЦП. Имея данный результат, нам несложно будет посчитать величину измеренного напряжения. Мы знаем. что если у нас АЦП 10-битный, то данный результат у нас лежит в промежутке от 0 до 1024, получаемтся всего у нас 1023 отрезка. И мы затем наш результат делим на 1023 и умножаем на величину опорного напряжения.

Посмотрим блок-схему АЦП в контроллере Atmega8

Мы видим, что у нас есть мультиплексор, имеющий 8 каналов, вход для опрного напряжения AREF. Также существует 8-разрядная шина данных, значения с которых записываются в определённый регистр. Есть регистр данных, регистр управления и состояния, а также регистр управления мультиплексором.

Мы будем использовать самый первый вход ADC0 и в качестве источника измеряемого напряжения будем использовать центральную ножку переменного резистора, подлключенного к контактам питания

Работать будем сначала в протеусе. Также мы видим, что у нас подключен дисплей самым обычным образом.

Также мы всё подключим и на живом контроллере

Существует несколько вариантов опорных напряжений, которые мы можем использовать.в нашем АЦП. Мы будем использовать внутреннее опорное напряжение на 2,56 вольт, оно проще, не нужно ничего подключать. Возможно, при таком варианте не очень сильная точность, но перед нами не стоит задача создать точный измерительный прибор. У нас есть задача — изучить возможность использования АЦП в контроллере AVR.

А вот и таблица вариантов опроных напряжений для АЦП

Перечислим данные варианты сверху вних по таблице. 1 вариант — это внутреннее опорное напряжение, равное напряжению питания, 2 вариант — опорное напряжение подаётся на вход AREF извне, 3 вариант — внутреннее 2,56 вольт с использованием внешнего конденсатора, которы у нас уже припаян к отладочной плате к определённым ножкам контроллера.

Также в АЦП есть делитель частоты на величину от 2 до 128. Делитель этот для того, чтобы мы добивались частоты работы АЦП не больше 200 кГц, иначе точность измерений будет очень малой и мы просто растеряем самые младшие биты. Если у нас возникнет требование имено к скорости измерений и нам уже точность будет на так важна, то мы сможем использовать и более высокие частоты измерений.

Теперь немного поближе познакомимся с регистрами АЦП.

Регистр ADCSRA — управляющий и статусный регистр

Теперь побитно.

ADEN — данный бит включает АЦП.

ADSC — при установке в 1 заставляет АЦП начинать преобразование.

ADFR — используется в режиме с использованием прерываний. При установке в 1 включает круговой режим, при котором измерения автоматически следуют одно за другим.

ADIF — бит, также используемый только в режиме прерываний. Это флаг прерываний, который устанавливается в определённых условиях.

ADIE — бит, включающий режим прерываний.

ADPS2-ADPS0 — биты, от комбинации которых зависит величина делителя

Регистр ADMUX — это регистр для управления каналами мультиплексора АЦП

Но, помимо непосредственно битов управления каналами у данного регистра есть ещё некоторые управляющие биты

REFS1-REFS0 — биты, включающие определённый режим использования опорного напряжения. Таблица была размещена на данной странице выше.

ADLAR — это бит организации расположения измеренных 10 битов в двух байтах регистровой пары данных. Поближе мы с этим расположением познакомимся чуть позже.

MUX3-MUX0 — биты, включающие определённый канал мультиплексора

Отсюда видно, что мы можем пользоваться несколькими каналами сразу только по очереди, попеременно включая различные комбинации данных битов. Также внизу есть две комбинации для калибровки нашего АЦП.

Ну и, наконец, регистровая пара ADCH и ADCL , состоящая из старшего и младшего байта в которую и заносится измеряемый результат. А как именно он туда укладывается, этот результат, зависит от состояния бита ADLAR, рассмотренного выше в регистре ADMUX

То есть, если бит ADLAR не выставлен, то младшие 8 бит результата находятся в младшем байте регистровой пары, а 2 старших бита — в младших битах старшего байта. Если же бит ADLAR у нас выставлен, то 8 самых старших бит результата находятся в сатршем байте, а 2 младших в 2 старших битах младшего байта регистровой пары. Второй вариант нам интересен при исользовании 8-битного режима. В данном случае мы читаем только старший байт.

Проект был создан полностью из проекта Test09 и был назван MyADCLCD .

Также для выноса кода для реализации периферии АЦП были созданы стандартным образом два файла adc.h и adc.c . Соответственно файл adc.h был подключен и в файле main.h и в adc.c.

В файл MyADCLCD.c код был также полностью скопирован из главного файла проекта Test09, всё лишнее было удалено. Код в данном файле после данной операции принял следующий вид

#include "main.h"

//—————————————-

void port_ini ( void )

PORTD =0x00;